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Abstract

The equations of motion of a curved tyre belt are derived for one-dimensional waves propagating around
the belt and a standing wave across the belt. The effects of curvature, shear stiffness, rotary inertia, tension,
rotational speed and air pressure are included. These are combined to give a sixth-order wave equation, the
solution of which gives three pairs of wavenumber as a function of frequency. The application of the
boundary conditions at the contact leads to the input and transfer mobilities for both in-plane and out of
plane excitation. Observed are: low-frequency rigid-body modes, belt bending modes and in-plane ring
modes. At high frequencies only travelling waves occur.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

When a rotating tyre interacts with the road surface, as seen in Fig. 1, the time varying
deformations are transmitted causing noise interior and exterior to the vehicle. To calculate this
interaction with the road and also to determine the resulting vibration of the tyre surface it is first
necessary to make a dynamic model of the tyre. Various tyre models have been developed for use
in different frequency regimes. Finite element models [1] and the lumped parameter ‘ring model’
[2] are used for low-frequency vehicle handling and ride comfort, generally below 50Hz. Vehicle
interior noise is greatest between 50 and 500Hz and the flexural modes of the belt that contribute
have been modelled using both finite elements [1] and modal solutions to a wave equation [3–5].
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Rotating tyre on a road profile.
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The main exterior noise occurs between 500 and 3000Hz, a region where there is little modal
behaviour of the belt flexural waves. A flat orthotropic plate [4], and a deep flat two-layered plate
[5], have been used with modal and travelling wave solutions. Also an infinite flat belt model that
included tension, transverse shear, rotary inertia and bending was made for this region [6,7]. The
dynamic behaviour was described by a fourth-order wave equation and input and transfer
mobilities were obtained for transverse excitation. Below about 1 kHz, only tension and bending
control the single propagating transverse wave; above this frequency a transverse shear wave and
an in-plane rotational wave propagate.
The objective here is to extend this wave model to include: curvature, side-walls, asymmetric

belt and tyre rotation to the other parameters, and thus make a complete circular belt model. A
circular beam in Refs. [8,9], without the complications of side-wall, tension and cross modes has
been investigated previously, for an energy flow application.
The main effect of curvature is to couple radial and circumferential motion thereby including

the effects of both normal and tangential forces in all vibration responses of the tyre. A single
model will therefore be made to embrace the whole frequency range of interest, from zero to
3 kHz, for both normal and tangential excitation. One-dimensional waves are allowed to
propagate around the belt with a standing wave pattern in the transverse direction. The side-wall
is modelled here from the static, pressure dependent, stiffness values taken from Ref. [7], a
frequency-dependent side-wall is considered in the companion paper [10]. The waves in the air
cavity are also neglected here, as they are only noticed at the first cavity resonance. They are,
however, also included in Ref. [10], but not with full structural–acoustic coupling.
Tyre rotation has three effects that are included here. Firstly, waves in the direction of rotation

have a corresponding speed increase, while waves in the opposite direction are slowed by the same
amount. Secondly, the increase in belt tension to resist centrifugal forces. Finally, radial velocity
couples with the rotation to cause Coriolis forces.
The equations of motion are combined to give a sixth-order wave equation for the

circumferential waves of a particular transverse mode order m. There are three pairs of roots
corresponding to the three waves that exist simultaneously at each frequency. The wavenumbers
of these waves are plotted against frequency in the ‘dispersion curves’. The ratio between radial
and circumferential motion for each of these waves is also generated.
The boundary conditions at what would be the contact with the road are applied, giving the

input and transfer mobilities for both radial and circumferential excitation. The transfer functions
show: low-frequency rigid-body modes, mid-frequency tension/bending modes, and the in-plane
mode group, beginning with the ring frequency around 500Hz.
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For line excitation only the waves of the m ¼ 0 transverse order are included to give the transfer
function. For point excitation the transfer functions from all the transverse mode orders are
summed.
The results from the belt model developed here are compared with measurements in the

companion paper [10].
2. Basic equations of motion

The overall scheme is shown in Fig. 1, where a tyre rotates in a positive or anti-clockwise sense
at velocity V and angular velocity O. In the first instance it is assumed all the excitation arises
from a transverse line of contact. To calculate the response to these forces the equations of motion
for the tyre must be found.
Fig. 2a shows a segment of length dc and width dz, in a tyre belt of radius a and width b,

displaying the sign convention for positive directions, rotations, forces and moments. It is
assumed that the belt rotates about the offset wire reinforced neutral axis seen in Fig. 2b. It is also
assumed that the averaged material properties of the cross-section are known, as reference will
only be made to these single material values for the cross-section. Using the wave approach it is
simple to make these material properties dependent on frequency, if required; but it is not
necessary to state this dependency until the programming stage.
(a)

(b)
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Fig. 2. (a) Sign convention for belt element and (b) asymmetric belt element.
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The tyre could be described as a curved, tensioned, Mindlin plate on distributed two-directional
stiffness. The belt is subjected to a net static pressure P which causes a static tension/length Nc, Nz

in the circumferential and transverse directions c; z. Qc, Qz are the shear forces/length. N is the
total static and dynamic circumferential force/width. Mc, Mz are the bending moments/length.
The accompanying displacements are u;w, in the circumferential and radial directions. y describes
the geometric position and is related to the circumferential coordinate c by ay. The tyre rotates
in the positive y direction with velocity V. The belt is restrained either side by a side-wall of
stiffness/belt length of Kc, Kr, in the circumferential and radial directions.
In this section three groups of equations are presented; kinematic relationships, equilibrium of

forces and moments, and the linking Hooke’s Law relationships.

2.1. Kinematic relationships

The segment motion can be described by three variables; displacements u;w and the kinematic
rotation F. For a Mindlin plate that can deform in both bending and shear, the slope at any
position s in the s and z directions are, respectively,

qw

qc
¼ bc þ gc, (1a)

qw

qz
¼ bz þ gz, (1b)

where bc, bz and gc; gz are the slopes due to bending and shear, respectively. The kinematic
rotation, in the c direction, of the element Fc, seen in Figs. 2a and b, including that due to the
circumferential displacement u, is therefore

Fc ¼
u

a
�

qw

qc
. (2a)

There is no geometric curvature in the z direction and so the rotation is simply

Fz ¼ �
qw

qz
. (2b)

The total angle j in the c direction is the sum of the geometric rotation y and the kinematic
rotation Fc. The small change in slope over the length dc is therefore

dj ¼
1

a
þ

qFc

qc

� �
dc. (3)

The circumferential strain ec also has contributions from both displacements

ec ¼
qu

qc
þ

w

a
. (4a)

The transverse strain ez only has a contribution from the transverse displacement uz

ez ¼
quz

qz
, (4b)

however, the transverse strain is ignored here and accordingly set to zero.
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2.2. Force equilibrium equations

There are four equations of equilibrium: forces in the radial direction, forces in the
circumferential direction (c), and for moments in the s and transverse (z) directions. The
equilibrium of radial forces are taken in line with the circumferential shear force/width Qc.
Substitution of the segment rotation in Eq. (2a) yields the equation for equilibrium. For
convenience, it is separated here into the equations for static and dynamic equilibrium. Eq. (5a)
for static equilibrium is also calculated in Appendix A:

Pþ mO2a�
2Nz sinf1

b
�

Nc

a
¼ 0,

pðc; zÞ þ
qQc

qc
þ

qQz

qz
�Ncd

1

a
þ

qFc

qc

� �
�Nc

qFc

qc
þNz

q2w
qz2
¼ m €w�

P

a
þ mO2

� �
w. (5a,b)

P is the net static air pressure. pðc; zÞ is the dynamic pressure due to the side-wall and external
radial force, it is calculated in Section 2.24. Nz is the static transverse tensile force/length; Nc and
Ncd are, respectively, the static and dynamic circumferential tensile forces/width; Qz is the shear
force/width in the radial direction. m is the belt mass/area.
By resolving forces in the c direction in line with the circumferential force/width N, in Fig. 2a,

and substitution of the segment rotation in Eq. (2a), gives

tðc; zÞ þ
qN

qc
þ

qQzc

qz
þQc

1

a
þ

qFc

qc

� �
¼ mð €uþ D €FcÞ þ 2m _w

cþ _uð Þ

a
þ

2Kc

b
u, (6)

where Kc is the circumferential stiffness/belt length of a single side-wall. The tangential external
stress is t. Qzc is the shear force/length in the circumferential direction. The wire reinforced neutral
axis displaces u, however, the asymmetry of the belt about the neutral axis gives an inertial
centroid which is displaced D, seen in Fig. 2b. The inertial centroid therefore accelerates by an
additional rotation included in Eq. (6). The second term from the right is the Coriolis force, which
gives gyroscopic coupling between the circumferential and radial motion. The nonlinear product
of the radial and axial velocities is ignored in the later analysis.
The net moment, taken about the right-hand end z-axis of the segment is responsible only for

the angular acceleration due to bending €bc (as the shear component of slope is a distortion that
does not involve overall rotation). The external moment/width M0 that arises from the offset h

from the neutral axis of the external shear force t is also included

qM0

qc
¼ th. (7a)

Moment equilibrium about the z-axis yields

Qc �
qMc

qc
¼ Ic

€bc þ
qM0 s; zð Þ

qc
, (7b)
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where Ic is the belt moment of inertia/width. Similarly, the net moment about the right-hand side
c-axis yields

Qz �
qMz

qz
¼ Iz

€bz, (7c)

where Iz is the belt moment of inertia/length about the c-axis.

2.3. Hooke’s Law relationships

The three types of forces in Section 2.2 are assumed to be linearly related to the three
deformation types given in Section 2.1. The constants of proportionality are the various elastic
moduli of the belt section.

2.3.1. Circumferential stress–strain
The circumferential force/width N has a static component Nc and a dynamic component Ncd ¼

Acec arising from the circumferential strain

N ¼ Nc þNcd , (8a)

where Ac is the belt circumferential stiffness/width. The tension Nc, calculated in Appendix A,
Fig. 15, has two components, one determined from the pressure and tyre geometry, the other from
resisting the datum centrifugal force mO2a

Nc ¼ Pa 1�
ls

b

sinf1

fs

� �
þ mO2a2,

where ls is the side-wall profile length and 2fs is the angle subtended by the side-wall profile. The
side-wall attaches to the belt at an angle f1. The static force/length in the transverse direction is
also given in Appendix A

Nz ¼
1

2

Pls

fs

. (8b)

2.3.2. Shear stress–strain relationships

In the circumferential direction the shear force/width Qc is related to the shear strain gc by the

belt shear stiffness/width Sc:

Qc ¼ Scgc. (9a)

Likewise in the transverse direction the shear force/width Qz is related to the shear strain gz, by the
belt shear stiffness/length Sz:

Qz ¼ Szgz. (9b)

The shear force in the circumferential direction normal to the z-axis Qzc is controlled by the shear
stiffness Szc:

Qzc ¼ Szc

qu

qz
. (9c)
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2.3.3. Bending moment–curvature

For a slender pre-curved beam of initial radius a the bending moment Mc is related to the total
radius of curvature r and the bending stiffness/width Bc [11]:

Mc ¼ Bc
1

r
�

1

a

� �
. (10)

Ref. [12] gives the radius of curvature r as a function of the strain and kinematic rotation as

1

r
¼

1

a
þ

qFc

qc

� �
1� ecð Þ. (11)

Therefore combining Eqs. (10) and (11) with a large initial curvature assumption, gives the
bending moment-to-curvature relationship as

Mc ¼ �Bc
qFc

qc
�

ec

a

� �
. (12)

Making substitutions from Eqs. (1a), (2a) and (4a) the bending moment in the circumferential
direction can now be written as

Mc ¼ �Bc
qbc

qc
þ

w

a2

� �
. (13a)

The first term in the brackets is the curvature for a flat plate. The second term is the moment due
to stretching of the neutral axis, becoming zero for a flat plate as the radius a tends to infinity.
This is a simpler and slightly different expression for this relationship than is given in Ref. [8].
Likewise substitutions from Eqs. (1b), (2b) and (4b) give the bending moment in the transverse
direction as

Mz ¼ �Bz
qbz

qz

� �
. (13b)

This corresponds to the plane bending expression for a flat plate, where Bz is the bending stiffness
in the transverse direction.
2.4. The ratio of shear rotation to bending rotation

For the circumferential direction, Eq. (1a) shows that the slope or rotation has two components
gc, bc, from shear and bending. The relative sizes of the bending slope to the total slope can now
be found by eliminating unwanted variables from Eqs. (1a), (7b) and (13a) using a harmonic time
dependency eiot, where o and t are frequency in radians/second, and time.

qw

qc

Bc

a2
þ Sc

� �
¼ �Bc

q2bc

qc2
þ ðSc � o2IcÞbc. (14a)

The corresponding version for the shear slope in the circumferential direction is found by
substitution of Eq. (1a). Likewise in the transverse direction, the ratio of total slope to bending
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slope is given from Eqs. (1b), (3b), and (13b)

qw

qz
ðSzÞ ¼ �Bz

q2bz

qz2
þ ðSz � o2IzÞbz. (14b)

2.5. Equivalent modal stiffness

Eq. (5b) for radial equilibrium contains two terms with differentials in z and also a dynamic
pressure term pðc; zÞ, associated with the side-wall stiffness. These three terms describing the belt
transverse properties are all expressed as dynamic stiffness for the mth transverse mode of the belt.
This procedure reduces Eq. (5) and the subsequent analysis to one-dimensional form, with only a
c variation for each belt transverse mode order m.

2.5.1. Modal stiffness from the shear force and tension
If a harmonic wave solution of the form bz ¼ bz expð�ikzzÞ is applied to Eq. (14b) the bending

rotation can be written as

bz ¼
Sz

Bzk
2
z þ Sz � o2Iz

 !
qw

qz
. (15)

Substitution of this equation into Eqs. (1b) and (9b) gives the shear force in the transverse
direction in terms of w:

Qz ¼ Sz

Bzk
2
z � o2Iz

Bzk
2
z þ Sz � o2Iz

qw

qz
. (16)

This shear force term and the tension term Nz in Eq. (5) can now be written as a modal stiffness if
some mode shapes can be selected to describe the radial motion in the z direction. To simplify this
procedure it is assumed here that the belt construction is much heavier than that of the side-wall,
which provides some justification for choosing boundary conditions at z ¼ �b=2 that are;
unconstrained in the radial direction but with zero slope. Also as the purpose here is not to
accurately predict resonance frequencies but rather to demonstrate the physical behaviour, the
simplest form, namely sine and cosine mode shapes are selected to satisfy these boundary
conditions. These occur for a discrete set of wavenumbers kz ¼ mp=b, m ¼ 0; 1; 2; 3 . . ., i.e.

wðc; zÞ ¼
X

m¼0;2;4...

wmðcÞ cos
mpz

b
þ

X
m¼1;3;5...

wmðcÞ sin
mpz

b
. (17)

Using Eqs. (16) and (17) the two z-dependant terms in Eq. (5) can now be replaced by a modal
stiffness Kmz, i.e.

qQz

qz
þNz

q2w
qz2
¼ Kmzw, (18)

where

Kmz ¼
mp
b

� �2
Nz þ Sz

Bzðmp=bÞ2 � o2Iz

Bzðmp=bÞ2 þ Sz � o2Iz

 !
.
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For the beam modes of the belt, denoted m ¼ 0, there is no curvature in the z direction and so this
modal stiffness is zero. For higher-order modes the stiffness increases with the square of the
transverse belt mode order m, which determines the mode cut-on frequency. Above the cut-on
frequency the mode forms in Eq. (17) propagate in the direction c.
2.5.2. The modal stiffness from the side-wall

The pressure on the belt pðc; zÞ has two components, the external load p0 and the pressure ps

from the side-wall displacement w at z ¼ �b=2. These give rise to a pressure distribution on the
belt

pðc; zÞ ¼ �Kr½dðz� b=2Þ þ dðzþ b=2Þ�wðc; zÞ þ p0ðc; zÞ (19)

which may be expressed as a sum of modal pressures Pm:

pðc; zÞ ¼
X

m¼0;2;4:::

PmðcÞ cos
mpz

b
þ

X
m¼1;3;5:::

PmðcÞ sin
mpz

b
. (20)

Substitution of Eq. (17) into Eq. (19), and application of the orthogonality relations to Eqs. (19)
and (20) allows the modal pressure terms to be written using the external modal pressure P0m and
a modal stiffness Krm

Pm ¼ �Krmwm þ P0m, (21)

where for m ¼ 0, Krm ¼ 2Kr=b; for m40 Krm ¼ 4Kr=b.
All the terms in z found in Eq. (5) can now be replaced with the modal stiffness terms of

Eqs. (18) and (21). The analysis now proceeds considering only wave motion in the c direction.
3. Equations of equilibrium in kinematic parameters

The three groups of equations of the previous sections can be combined to give the two
equations of equilibrium of force only in terms of the displacements u;w.
3.1. Equation of radial equilibrium

The equation of radial equilibrium is found with three preliminary steps. These are to find the
shear gradient, bending gradient, and the associated shear force. Eq. (5) of radial equilibrium is
first expanded using Eqs. (1a), (2a), (4a), (7b), (8a), (9a), (12), (18) and (21), giving the gradients of
the shear stress or shear strain.
The radial displacement for all subsequent analysis becomes wm as each equation refers only to

the displacement for the mth transverse mode, as expressed in Eq. (17), the other kinematic and
force variables likewise have the modal subscript m, i.e. um; gm;bm:

Sc
qgm

qc
¼ �P0m þ

qum

aqc
ðNc þ AcÞ �Nc

q2wm

qc2
þ ðAc þ ðKzm þ KrmÞa

2 � Pa� ðo2 þ O2Þma2Þ
wm

a2
.

(22)
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The gradient of the slope due to bending is the derivative of Eq. (1a)

qbm

qc
¼

q2wm

qc2
�

qgm

qc
. (23)

The shear force/width can be written, in the first instance, by expanding Eq. (7b) with Eq. (13a)

Qm ¼ �Bc

q2bm

qc2
þ

qwm

a2qc

� �
� o2Icbm þ

qM0m

qc
. (24)

By substituting Eq. (22) into Eq. (24), the shear force becomes

Qm ¼ �
Bc

a2Sc

a2 q
3wm

qc3
ðSc þNcÞ �

qwm

qc
ðAc � Sc � Paþ ðKzm þ KrmÞa

2 � ðo2 þ O2Þma2Þ

�a
q2um

qc2
ðNc þ AcÞ � a2 qP0m

qc

8>>><
>>>:

9>>>=
>>>;

� o2Icbm þ
qM0m

qc
. ð25Þ

This expression for shear force can now be differentiated with respect to c, then combined with
Eq. (23) to eliminate qbm=qc. The resulting expression for qgm=qc is then substituted into Eq. (22),
giving the equation for vertical equilibrium only in terms of um and wm. It is presented here in a
non-dimensional form which will be employed later in the wave equation

0 ¼ � a3 q4wm

qc4
ðS̄c þ N̄cÞ þ a

q2wm

qc2
fC1 � S̄cð1þ z2cÞ � N̄cC2g þ

wm

a
C1C2

þ ð1þ N̄cÞ a2 q3um

qc3
þ

qum

qc
C2

� �
þ C2C3 þ f m. ð26Þ

In Eq. (26) some parameters have been grouped together in brackets ( ) as they share some
physical significance

C1 ¼ 1þ K̄m � P̄a� z2Lc � Zce,

C2 ¼ z2c � R̄c,

C3 ¼ �P̄0m,

f m ¼ a2
q2P̄0m

qc2
þ hR̄s

qt̄
qc

, (27a2c)

where

S̄c ¼
Sc

Ac

; N̄c ¼
Nc

Ac

; P̄a ¼
Pa

Ac

; R̄c ¼ a2
Sc

Bc

; K̄m ¼ a2 Krm þ Kzm

Ac

; Zce ¼ a2
mO2

Ac

.
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The external loading term f m uses Eq. (7a) to write the moment M0m in terms of shear stress t.
The normalised external pressures and shear stresses are defined as

P̄0m ¼ a
P0m

Ac

; t̄m ¼ a
tm

Ac

.

The normalised non-dimensional circumferential wavenumber zLc is defined by

z2Lc ¼ ðaoÞ
2 m

Ac

.

There is a wave that cuts on at high frequencies that involves only belt rotation and no
translation, here it is called the ‘rotational wave’ [6], it could also be called the first asymmetric
Lamb wave [13]. The wavenumber zc is defined by

z2c ¼ ðaoÞ
2 Ic

Bc

.

When C1 ¼ 0 the ring frequency occurs for the m ¼ 0 waves, it increases with the side-wall radial
stiffness Kr, but decreases with inflation pressure P and rotation speed. An instability occurs when
the tyre speed drives the ring frequency to zero as the radial stiffness becomes zero.
When C2 ¼ 0 the rotational wave cuts on. This cut-on frequency increases with the section

shear stiffness (proportional to belt depth), but decreases with the section moment of inertia
(proportional to the cube of belt depth). The cut-on frequency is therefore inversely proportional
to belt thickness.
For an infinite cylinder with no side-wall, static equilibrium gives C3 ¼ 0. For a finite width tyre

it can be assumed that this term is negative, as the side-wall will take some of the tension.
The external load f m has two components, the first is the radial load and the second is a

moment from the tangential force.
For a flat belt with zero: tension, shear stiffness, side-wall stiffness, Eq. (26) reverts to the Euler

beam bending equation.

3.2. The equation of circumferential equilibrium

Eq. (6) for circumferential equilibrium can be expanded with Eqs. (1a), (8a) and (9a) to yield

t̄m þ a
q2um

qc2
þ

qwm

qc
ð1� z2LcD̄Þ þ S̄cgm 1þ a

qFm

qc

� �
¼

um

a
ðK̄cm þ K̄zcm � z2LcÞ þ

wm

a
Zco, (28)

where the normalised radial side-wall stiffness derived in Eq. (21) is kz ¼ mp=b. The normalised
cross mode shear stiffness is found from Eqs. (6) and (9c) by setting

K̄cm ¼ 2a2 Kc

Acb
for m ¼ 0; K̄cm ¼ 4a2

Kc

Acb
for m40; K̄zcm ¼ Szc

mp
b

� �2 a2

Ac

.

The Coriolis term and centroid offset are

Zco ¼
2iomc

Ac

; D̄ ¼
D
a
.
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This equation will now be simplified using the following justification. The non-dimensional
shear stiffness S̄c, defined in Eq. (26), is the ratio of the average section shear stiffness to
circumferential stiffness. For a tyre belt the shear stiffness is dominated by the rubber, and the
circumferential stiffness by the embedded steel wires; the shear stiffness ratio is likely to be of the
order of 0.01, allowing this final term on the left hand to be ignored in the proceeding analysis.
For a homogeneous material it is also probably safe to ignore this term for three reasons. First

the second term in the bracket forms a nonlinear product gmqfm=qc, which is also very small. The
greatest value of the shear ratio for a homogeneous material e.g. for steel, S̄c � 0:3, and as from
Eq. (1) gpqw=qc, the greatest possible error in the shear wavenumber from the omission is 30%.
The equation for circumferential equilibrium can therefore be written in the reduced form below

t̄m þ a
q2um

qc2
þ

qwm

qc
ð1� z2LcD̄Þ ¼

um

a
ðK̄cm þ K̄zcm � z2LcÞ þ

wm

a
Zco. (29)

For a flat beam a!1 and Eq. (29) becomes that for longitudinal motion of a rod. The cross-
coupling to radial motion w is purely geometric, and increases with decreasing radius a. The term
in brackets, C

C4 ¼ K̄cm þ K̄zcm � z2Lc (30)

becomes zero at the rotational rigid-body resonance of the belt (n ¼ 0). At this frequency the belt
rotates on the side-wall shear stiffness. At 1=

ffiffiffi
2
p

of this frequency the n ¼ 1 translation rigid-body
resonance occurs. Below these frequencies there is mainly rigid-body motion of the belt.
3.3. The wave equation for a circular tyre belt

The wave equation for a free belt is given by combining Eqs. (26) and (29), but setting the load
terms f m and tm to zero. A harmonic solution for a wave travelling in the positive c direction, of
the form e�ikc, is applied. Then by substituting for wm using Eq. (29), the sixth-order wave
equation is obtained in the normalized wavenumber zm ¼ kma

0 ¼ z6mðS̄c þ N̄cÞ

� z4m½z
2
Lcð1� D̄ð1þ N̄cÞÞ þ P̄aþ Zce � K̄m � N̄cR̄c þ ðS̄c þ N̄cÞð1þ z2c þ z2Lc � K̄cm � K̄zcmÞ�

þ z2m

ðK̄cm � K̄zcm � z2LcÞð1þ K̄m � P̄a� S̄c � z2Lc þ Zce þ N̄cR̄c � z2cðS̄c þ N̄cÞÞ

þ ðz2c � R̄cÞðN̄c � K̄m þ P̄aþ Zce þ z2Lcð1� D̄ð1þ N̄cÞÞÞ

" #

þ ð1þ K̄m � P̄a� Zce � z2LcÞðz
2
c � R̄cÞðz

2
Lc � K̄cm � K̄zcmÞ

� ið1þ N̄cÞðz
3
m � ðz

2
c � R̄cÞzmÞZco. ð31Þ

The components within the brackets are functions of frequency or constants. The material
properties can be complex to include hysteretic damping; they can also be written as functions of
frequency (as is the case for polymers).
The final term with the odd wavenumber orders is the Coriolis coupling, the � is for the anti-

clockwise and clockwise waves, respectively. This term may be significant in the contact patch but
not for a circular tyre, and so is ignored in this initial study.
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The equation in z2m is solved at each frequency to give three pairs of roots p ¼ 1; 2; 3 for each
transverse mode group m. The normalised wavenumbers are of the form zpm i.e. �z1m;�z2m;�z3m,
‘þ’ denotes the positive or anti-clockwise travelling wave, ‘�’ denotes the negative or clockwise
travelling wave. The subscript m will be omitted in the following discussion for the sake of
simplicity.
In this analysis the three selected wavenumbers kp will take the sign and form of the wave that

exists in the positive direction. The corresponding wave in the negative direction is always assumed
to take the opposite sign. The roots are complex in general, and all the possibilities are plotted in
Fig. 4. The true roots or waves are those that decay in the anti-clockwise direction and have the
possibilities ð�kr � ikiÞ, where kr and ki are the real and imaginary wavenumbers. These roots are
those of the lower half of the figure. The correct anti-clockwise wave therefore takes the form

expð�ikpcÞ ¼ expð�ikrcÞ expð�kicÞ.

This wave can be of three types
1.
 krbki, a propagating or travelling wave, seen just below the real axis. For zero damping this
root lies on the axis, damping causes this root and all the others to rotate in a clockwise
direction.
2.
 kibkr, the evanescent bending wave is purely imaginary for zero damping, the damping gives
small negative real part.
3.
 kr � ki is termed the ‘complex wave’, which always occurs in a pair �kr � iki (labelled 1, 2) to
form a rapidly decaying standing wave, which usually describes a local stiffness characteristic.

3.4. Wavenumbers modified by tyre rotation

All the displacements are functions of wavenumber, defined in the frame of reference
of the tyre. However, in practice the tyre is rotating in relation to the axle, and wavenumbers
are perceived from this reference to differ from those of the reference frame of the tyre. This
is true only for travelling waves, where energy is stored within the tyre as both kinetic and
strain energy. However, the situation is less clear for the evanescent and complex ‘waves’
which exist only to satisfy the boundary conditions in the locality of the excitation. The complex
wave describes stiffness and will therefore not be affected by the rotation, which acts on
inertia. Alternatively, it could be said that the phase speed for a complex wave is infinite and so
will not be significantly perturbed by rotation. The evanescent bending wave represents inertia
and so is expected to be influenced by rotation, but this effect is ignored here because of the
difficulty in isolating the root in the program. The changes for the travelling waves only were
made as follows.
The wave phase speeds for anti-clockwise and clockwise travelling waves are the same, i.e. Vp,

p ¼ 1; 2; 3 for no rotation. If the tyre rotates anti-clockwise at velocity V, the travelling waves
change velocity relative to the wheel axle and line of contact (but the waves still travel at their
original velocities in relation to the belt). The modified wave speeds relative to the axle are

Vpa ¼ Vp þ V ,

Vpb ¼ Vp � V . ð32Þ
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The anti-clockwise wave becomes Vpa, faster by V; while the clockwise wave Vpb slows by V.

Using the relationship, kp ¼ oVp, the wavenumbers become

kpa ¼
kp

1þRefkpgV=o
; kpb ¼

kp

1�RefkpgV=o
. (33)

Note that both wavenumbers are positive here, the appropriate negative sign for the negative
travelling wave is included in the analysis of the next section.
Only the real part of wavenumber is related to energy transfer and is employed in the

denominator. If there is no rotation: kb ¼ kp, kpa ¼ kp:
4. Belt transfer functions

Fig. 3 shows the tyre belt subjected to external forces at the contact point y ¼ 0. All the forces,
moments, kinematic quantities, and wavenumbers in the following analysis are assumed to refer to a

particular belt lateral mode of order m, until the final discussion on the transfer functions.
If a normal force Fy or a tangential force Fx is applied to the tyre it causes responses at every

point c, in both the circumferential u and radial w directions. These responses are quantified in the
transfer functions. All the transfer functions can be calculated from the summation of the three
pairs of waves that exist at each frequency. The amplitudes of these waves are found from the six
boundary conditions at the contact line with the force input, corresponding to the road contact
with the tyre.
A matrix of radial wave amplitudes is written. These are used to give: slopes f, in-plane

displacements, shear rotation a, bending rotation b, in-plane forces N, shear forces Q and
moments M. The six boundary conditions are then expressed as a matrix in terms of the radial
displacements. The solution of this matrix gives the wave amplitudes and hence the transfer
functions.
θ, Φθ, Φc

u, c
                           

w 

Qc(lc)

Mc(lc)

Qc(0)
Mc(0)

N(0)N(lc)

Fy, uy 

Fx, ux 

Φc

Fig. 3. Forces on the belt at the contact line.
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4.1. The wave field

The radial displacement w, and circumferential displacement u, at any point c are written as a
sum of the three wave pairs. The gradient of each wave also has two components due to bending
and shear, respectively.

4.1.1. Radial displacement

The wavenumbers for the three wave pairs obtained from the wave equation are: kpa; kpb,
p ¼ 1; 2; 3; a (anti-clockwise), b (clockwise), denote the direction of the wave propagation. If there
is no rotation, kpa ¼ kpb ¼ kp for all waves. From Eq. (33), rotation only causes a change to the
travelling wave, i.e. 0okpaokpokpb.
The radial amplitudes of each of the three pairs of waves: wpa;wpb, are given in a column matrix wp.

wp ¼

w1a

w1b

w2a

w2b

w3a

w3b

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (34)

At position c each wave becomes phase-lagged and attenuated in accordance with the 6�6 diagonal
matrix Lpc:

Lpc ¼ diag½e�ik1ac; a1be
ik1bc; e�ik2ac; a2be

ik2bc; e�ik3ac; a3be
ik3bc�, (35)

where the exponential attenuation and phase-lag over the belt circumference lc ¼ 2pa is

apa ¼ expð�ikpalcÞ; apc ¼ expð�ikpblcÞ.

The column matrix for weighted wave amplitude and phase is wpc:

wpc ¼ Lpcwp. (36)

The radial displacement wðcÞ at any point c is the sum of the six waves in Eq. (36)

wðcÞ ¼ ITwpc, (37)

where the row matrix IT ¼ f1 1 1 1 1 1g is just a device to make the sum.
The slope at any point c is obtained using the differential operator Dp:

qw

qc
¼ ITDpwpc, (38)

where Dp ¼ diag½�ik1a; ik1b;�ik2a; ik2b;�ik3a; ik3b�.

4.1.2. Circumferential displacement

The circumferential displacement upa is the radial displacement wpa weighted by the
displacement ratios Apa and Apb for anti-clockwise and clockwise pth wave.

upa ¼ Apawpa; upb ¼ Apbwpb. (39a,b)
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The displacement ratios for the anti-clockwise and clockwise waves are found by substituting the
harmonic travelling wave solutions expð�ikpcÞ into Eq. (29)

Apa;Apb ¼
�izpað1� z2LD̄Þ � Zco

z2pa � z2L þ K̄cm þ K̄zcm

. (40a,b)

The Coriolis coupling Zco is set to zero in this study. The total circumferential displacement uðcÞ is
the sum of the six wave displacements up in Eq. (36)

uðcÞ ¼ ITApwpc. (41)

The diagonal matrix of displacement ratios is

Ap ¼ diag½A1a;A1b;A2a;A2b;A3a;A3b�.

4.1.3. The slope due to bending

The gradient qw=qc is given in Eq. (1a) as the sum of the bending slope b and the shear g. Slope
due to bending is related to the gradient by Eq. (14a). On substitution of the harmonic solution
for a clockwise or anti-clockwise travelling wave p, and using the normalisation of Eq. (26)

bp ¼ Ep

qwp

qc
, (42)

where

Epa ¼ Epb ¼
1þ R̄c

z2p � z2c þ R̄c

.

The diagonal matrix of wave weighting functions Epa, Epb is

Ep ¼ diag½E1a;E1b;E2a;E2b;E3a;E3b�. (43)
4.2. The boundary conditions

There are six boundary conditions all at the contact line. Three are geometric continuity
relations linking the belt either side of the contact line. The other three are the resolution of the
two external forces and moment, into the internal forces. All the boundary conditions are
expressed in terms of the six radial wave amplitudes wp.
4.2.1. Continuity of radial displacement
There is continuity in the radial displacement at y ¼ 0; y ¼ 2p, or c ¼ 0, c ¼ lc, where lc is the

belt length. From Eqs. (36) and (37)

0 ¼ B1pwp, (44)
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where

B1p ¼ ITðLpcð0Þ � LpcðlcÞÞ

or

B1p ¼ ½1� a1a a1b � 1 1� a2a a2b � 1 1� a3a a3b � 1�.

4.2.2. Continuity of circumferential displacement

There is continuity of circumferential displacement at c ¼ 0; c ¼ lc, so equating these
displacements using Eqs. (36) and (41) gives

0 ¼ B2pwp, (45)

where

B2p ¼ ITApðLpcð0Þ � LpcðlcÞÞ

or

B2p ¼ ½A1að1� a1aÞ A1bða1b � 1Þ A2að1� a2aÞ A2bða2b � 1Þ A3að1� a3aÞ A3bða3b � 1Þ�.

4.2.3. Continuity of slope due to bending
Slope due to bending b, is continuous across the input line. However slope due to the shear g, is

discontinuous because of the external shear force. Continuity of slope due to bending can be
expressed as bð0Þ ¼ bðlcÞ, or using Eqs. (36), (38), (42) and (43)

0 ¼ B3pwp, (46)

where

B3p ¼ ITEpDpðLpcð0Þ � LpcðlcÞÞ.

This can be expanded to give the 6�1 row matrix

B3p ¼ ½�ikpaEpað1� apaÞ ikpbEpbðapb � 1Þ::::::::::::::::::�; p ¼ 1; 2; 3.

4.2.4. Bending moment

An external moment will be applied in any practical situation because the external in-plane
force is applied at the tread surface rather than at the neutral axis. The external moment M0 is
balanced by the internal moments at c ¼ 0 and lc, i.e.

M0 ¼McðlcÞ �Mcð0Þ.

If substitution is made from Eq. (13a)

M0 ¼ Bc

qbc

qc
�

w

a

� 	
c¼0

� Bc

qbc

qc
�

w

a

� 	
c¼lc

. (47)

By differentiating Eq. (42) with respect to c, and using the continuity in w, this becomes

M0 ¼ B4pwp, (48)
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where

B4p ¼ BcI
TEpD

2
pðLpcð0Þ � LpcðlcÞÞ.

Expansion of this expression gives a 6�1 row matrix

B4p ¼ Bc½�k2
paEpað1� apaÞ � k2

pbEpbðapb � 1Þ::::::::::::::::::�; p ¼ 1; 2; 3.

4.2.5. Normal force resolution
The normal force/width Fy, seen in Fig. 3, can be resolved into the component internal shear

forces/width Qc, and circumferential forces/width N, at c ¼ 0; c ¼ lc

Fy ¼ ½Qc �NFc�c¼0 � ½Qc �NFc�c¼lc
, (49)

where the kinematic rotation Fc, is given in Eq. (2a). The circumferential force/width N is given
from Eq. (8a) as the dynamic force and Nc, the static in-plane force/width. The shear force for the
pth wave can be expanded using Eqs. (1a), (9a) and (43). I0 is the unit matrix

Qp ¼ ScðI0 � EpÞ
qwp

qc
. (50)

If only the static circumferential force is considered, i.e. N ¼ Nc, then substitution into Eq. (49) of
Eqs. (2a), (38), (41), (43) and (50), yield

Fy ¼ B5pwp, (51)

where

B5p ¼ IT ðSc þNcÞDp � ScEpDp �
Nc

a
Ap

� �
ðLpcð0Þ � LpcðlcÞÞ.

On expanding the terms this becomes the following 6�1 row matrix:

B5p ¼ ½B51a B51b
..
.

B52a B52b
..
.

B53a B53b�.

For the pth pair of anti-clockwise and clockwise coefficients B5paB5pb

½B5pa B5pb� ¼

ikpaðScð1� EpaÞ þNcÞ �
Nc

a
Apa

� �
ðapa � 1Þ

ikpbðScð1� EpbÞ þNcÞ �
Nc

a
Apb

� �
ðapb � 1Þ

2
6664

3
7775; p ¼ 1; 2; 3.

4.2.6. Tangential force resolution

Resolution of the tangential forces seen in Fig. 3 yields

Fx ¼ NðlcÞ �Nð0Þ, (52)
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where Fx is the external tangential force/width, N is the circumferential force/width defined in Eq.
(8a). By making substitutions from Eqs. (8a) and (4a), the tangential force becomes

Fx ¼ Ac

qu

qc
þ

w

a

� �
c¼lc

� Ac

qu

qc
þ

w

a

� �
c¼0

(53)

which is, on using the amplitude ratio of Eq. (41) with Eqs. (36) and (38)

Fx ¼ B6pwp, (54)

where

B6p ¼ �AcI
T DpAp þ

1

a
I0

� �
ðLpcð0Þ � LpcðlcÞÞ.

Eq. (54) may be further expanded as a row matrix of three pairs

B6p ¼ ½B61a B61b
..
.
B62a B62b

..

.
B63a B63b�.

The pth pair is

½B6pa B6pb� ¼ Acðapa � 1Þ �ikpaApa þ
1

a

� �
Acð1� apbÞ ikpbApb þ

1

a

� �� 	
; p ¼ 1; 2; 3.

4.3. The belt transfer functions

The six boundary conditions may now be assembled into a single matrix. The solution of this
matrix gives the required transfer functions for either normal or tangential excitation. The
boundary conditions that sum to zero are found in Eqs. (44)–(46), (50), those with an external
force are in Eqs. (51), (54). The boundary conditions are written as a stiffness matrix K

F ¼ Kwp, (55)

where the force matrix F includes the two external forces, wp are the wave radial displacement
amplitudes

F ¼

0

0

0

M0

Fy

Fx

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; K ¼

B1p

B2p

B3p

B4p

B5p

B6p

2
6666666664

3
7777777775
; wp ¼

w1a

w1b

w2a

w2b

w3a

w3b

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
.

Inversion of Eq. (55) gives the radial wave amplitudes

wp ¼ K�1F. (56)
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The circumferential wave amplitudes weight these by the amplitude ratio in Eq. (41)

up ¼ Apwp. (57)

The displacements wðcÞ, uðcÞ at any point c are found by multiplying the wave amplitudes with the
position weighting 6�1 row matrix from Eqs. (36) and (37)

ITLpc ¼ fexpð�ikpacÞ apb expðikpbcÞ:::::::::::::::g; p ¼ 1; 2; 3,

wðcÞ ¼ ITLpcwp; uðcÞ ¼ ITLpcup. (58a,b)

4.3.1. Radial and circumferential mobility for a normal force
The radial and circumferential mobility for a normal force is obtained by modifying

the force column matrix in Eq. (55); Fx ¼ 0, M0 ¼ 0, Fy ¼ �Fym, where Fym refers specifically
to the force applied to the mth transverse belt mode. The negative sign arises because
the applied force in Fig. 3 is in the negative radial direction. The responses in Eq. (58)
are also replaced by the specified modal equivalent, i.e. wmðcÞ ¼ wðcÞ, umðcÞ ¼ uðcÞ. Then Eqs.
(56)–(58) give

_wmðcÞ

Fym

¼ Y yy
m ðcÞ ¼ ioITLpcK

�1F,

_umðcÞ

Fym

¼ Y xy
m ðcÞ ¼ ioApK

�1F. (59)

Y yy
m ðcÞ, Y xy

m ðcÞ, are the modal mobilities at position c in the radial and circumferential directions,
respectively. The modal forces for any line force FymðzÞ can be found from the modal
decomposition equation:

FyðzÞ ¼
X

m¼0;2;4...

Fym cos
mpz

b
þ

X
m¼1;3;5...

Fym sin
mpz

b
. (60)

For the particular case of a point force at z, i.e. FyðzÞ ¼ F0dðz� z0Þ the orthogonality relations
applied to Eq. (60), i.e. Z z¼b=2

z¼�b=2
:::::: cos

mpz

b
þ sin

mpz

b

� �
dz

yields

Fy0 ¼
F0

b m¼0
; Fym ¼

2F0

b
cos

mpz0

b m¼2;4...
þ sin

mpz0

b m¼1;3...

� �
. (61)

The modal force from a line force of total magnitude F0 applied over the belt width b is the first
term in Eq. (61) i.e. Fy0 ¼ F0=b.
The velocity response in the radial and circumferential directions, to a unit point radial

force, is a sum of the modal contributions in Eq. (59), with the modal forces available
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from Eq. (61):

Y yy ¼
X

m¼0;1;2;3::::

Y yy
m ,

Y xy ¼
X

m¼0;1;2;3:::

Y xy
m . ð62a;bÞ

4.3.2. Radial and circumferential mobilities for a circumferential force

The mobilities for a unit line circumferential force acting on the neutral axis are obtained by
modifying the force column matrix in Eqs. (55), (59); Fx ¼ 1=b, Fy ¼ 0, M0 ¼ 0, where b is the
belt width.

4.3.3. Radial and circumferential mobilities for a tangential force on the surface

The mobilities for a unit line circumferential force acting tangentially on the surface are obtained
by modifying the force column matrix in Eqs. (55), (59); Fx ¼ 1=b, Fy ¼ 0, M0 ¼ t=b, where b is the
belt width and t the distance from the surface to the neutral axis. The circumferential displacement
on the surface u0ps includes a component from the belt rotation from Eqs. (36)–(38)

u0pc ¼ upc þ tDpwpc. (63)
5. Parameter study

Some parameters seen in Table 1, were selected for the physical properties of a typical
automobile tyre; they are a modified version of those used in Refs. [6,7]. Using these properties the
Table 1

Belt parameters

Symbol Size or equation Units

Internal pressure P 2� 105 N=m2

Belt thickness t 1:6� 10�2 m

Belt radius a 0.3 m

Belt width b 0.16 m

Side-wall length ls 0.1 m

Side-wall angle ys p=6 rad

Tensile force/width Nc Nz Eq. (A.4) P� ls=2ys N/m

Shear moduli Gc Gz 5� 107 5� 107 N=m2

Shear stiffness/width Sc Sz Gc � t Gz � t N/m

Bending stiffness/width Bc Bz 107 90 Nm

Axial stiffness/width Ac 1� 107 1 N/m

Belt mass/area m 16 kg=m2

Rotational inertia/width Ic Iz m� t2=3 m� t2=3 kg

Bending and shear loss factor Z1 Z1 0.15 0.15

Axial and tension loss factor Z2 Z2 0.1 0.1

Side-wall stiffness/length Kr Kc 1:4� 106 2:1� 105 N=m2
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following related quantities are generated and discussed for the m ¼ 0 wavegroup generated by
line excitation, namely, the wavenumbers, the ratio between radial and longitudinal motion, the
slopes due to bending and shear, and radial and circumferential mobilities. Finally, a modal
summation is made and the point and transfer mobilities are plotted.
5.1. Wavenumber as a function of frequency

For Figs. 5–7, a consistent notation is employed to identify the roots of the anticlockwise
wavenumbers: — root 1, - - - - root 2, :::::: root 3. The properties of each root will be discussed with
reference to these figures. The issues are: the significant frequency ranges, and the wave
mechanism in each frequency range.
All the results are plotted between 10Hz and 10 kHz, covering the practical range of interest.

Fig. 5a shows the three wavenumber magnitudes, or wavenumber radii given in Fig. 4. Fig. 5b
displays the corresponding phase F of each wavenumber, where F ¼ tan�1ðki=krÞ. The phase of
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Fig. 5. (a) Modulus and (b) phase of wavenumbers: root 1, - � - � - � -� root 2, � � � � � � root 3.
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all anti-clockwise wavenumbers lie between 0 and �p as was indicated in Fig. 4. Figs. 6a and b
give the modulus and phase of the ratio Ap of longitudinal motion to transverse motion for each
root. Figs. 7a and b display, for each wave, the ratio of shear slope to bending slope.

5.1.1. Wavenumber root 1

Roots 1 and 2 seen in Fig. 5a are a complex pair of constant equal modulii below 120Hz. The
roots are symmetric about the negative imaginary axis in Fig. 4; or alternatively in Fig. 5b, the
wavenumber phases are equally greater and less than the imaginary axis value of �p=2. In Fig. 6a
it is shown that their dominant motion is radial rather than circumferential. In this frequency
range, below the rigid body translational mode at 120Hz, these two roots are responsible for the
local stiffness controlled deformation around the contact line (Section 5.2.1).
Between 120Hz and 3 kHz root 1 is an evanescent bending wave. This is evident from the

modulus, in Fig. 5a, increasing as ðfrequencyÞ1=2, while the phase is near �p=2. The phase is
slightly more negative than this because of the material damping. Fig. 6a also indicates that the
motion is predominately radial. At 3 kHz there is a dip in the wavenumber modulus and a large
step in the phase in Fig. 6b, to almost 0 rad. This behaviour marks the cut-on of the rotational
travelling wave, identifiable as a travelling wave from a wavenumber phase near zero. The form of
this wave is suggested from Figs. 6 and 7. From Fig. 6 it is seen to be a radial wave. From Fig. 7a
and b the bending and shear components are in anti-phase, but the shear part is just dominant.
This implies that this wave does not have a large net radial component and may therefore be able
to propagate in the tyre contact patch, where radial motion is not encouraged excitation.
The wave speed at high frequencies is close to that of the speed of sound, and so this could

contribute to sound radiation, particularly for in-plane shear excitation in the contact region.

5.1.2. Wavenumber root 2

The second root forms the complex complement of root 1 until the rigid-body translational
resonance at 120Hz, as discussed above. Between 120Hz and the ring-frequency at 450Hz the
phase of near �p=2 suggest no propagation. Above the ring-frequency the root cuts on and
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Fig. 7. (a) Modulus and (b) phase of shear slope/bending slope: root 1, 2 �2 �2 root 2, � � � � � � root 3.
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propagates as a longitudinal wave. This wave is identified from three things: the slope
proportional to frequency (in Fig. 5a), a near zero phase (in Fig. 5b), and a dominant longitudinal
motion in Fig. 6a. The wave speed is 800m/s and is therefore able to radiate sound freely.

5.1.3. Wavenumber root 3

At 60Hz the rigid-body rotation resonance occurs, of the belt mass upon the side-wall shear
stiffness. Below this frequency root 3 is responsible for describing the rigid-body motion. The
wavelength can be calculated, from the wavenumber in Fig. 5a, to be one tyre circumference as for
the n ¼ 1 mode.
At higher frequencies a propagating wave cuts on, seen from the near zero phase in Fig. 5a.

Figs. 6a and 7a show it to be a bending wave below the rotational wave cut-on at 3 kHz. The wave
only propagates above the frequency of the n ¼ 1 mode at 120Hz, when the belt resonates on the
side-wall. Above this frequency the travelling wave is responsible for any discernible standing
wave below the ring-frequency at 450Hz. The wave is controlled by belt tension and bending
stiffness, although the slope in Fig. 5a above 200Hz is proportional to ðfrequencyÞ1=2 suggesting
the bending is dominant here.
The wave becomes shear dominated above 3 kHz as may be deduced from: the predominately

radial motion in Fig. 6a, the greater shear motion in Fig. 7a. The wave speed is 200m/s at 10 kHz
which is less than the speed of sound in air. Radiation of sound is only expected from the
discontinuity at the excitation line.

5.2. Transfer functions for line excitation in the radial and circumferential directions

The wavenumbers can now be used in the assembly of transfer functions using the
procedures of Section 4. The force is normal or tangential and is applied at the contact line at
0�. The velocity response is calculated at the same position to give input mobility, it is also
calculated at 180� to give the transfer mobility. Radial and longitudinal (circumferential)
mobilities are given in Figs. 8 and 9. The tangential mobility at the tyre surface due to longitudinal



ARTICLE IN PRESS

10
1

10
2

10
3

10
4

10-5

10-4

10-3

Frequency (Hz)

 M
ob

ili
ty

 Y
x 

(m
/s

/N
) 

Fig. 9. Longitudinal mobilities: — transfer modulus at 180�, input modulus, � � � � � � input real part.

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

Frequency (Hz)

 M
ob

ili
ty

 Y
y 

(m
/s

/N
) 

Fig. 8. Radial mobilities: — transfer modulus at 180�, input modulus, � � � � � � input real part.

R.J. Pinnington / Journal of Sound and Vibration 290 (2006) 101–132 125
and radial motion is given in Fig. 10. Finally, two parameter variations are presented in Figs. 11
and 12, showing the effects of pressure and tyre speed.
5.2.1. Radial mobilities
Fig. 8 gives radial mobilities at the input at 0�, and 180�, from a normal force at the contact line

at 0�. The real part of the input mobility is always positive which implies that the model is
physically possible. Below the rigid body transverse mode n ¼ 1 at 120Hz, the input mobility
modulus is controlled by the local stiffness, generated from the complex roots 1 and 2. The
transfer mobility is accordingly at least an order of magnitude lower. Between 120 and 450Hz the
n ¼ 1; 2; 3; . . . bending wave resonance frequencies, from root 3, can be seen. The transfer mobility
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levels are lower because there is no contribution from the evanescent bending wave, and the waves
are attenuated by the damping.
At 450Hz the ring-frequency occurs, n ¼ 0, when a longitudinal wavelength (root 2), fits

around the circumference. A larger peak is seen at this frequency at the input; but a trough occurs
in the transfer mobility. The ring mode is therefore only local to the excitation as suggested by the
non-zero root 2 wavenumber phase, in Fig. 5b. This may explain why this phenomenon is not
easily observed in measurements. The second longitudinal wave resonance is seen near 1 kHz on
all plots.
The input modulus and real part of mobility have a slope of (frequency)�1=2 until 3 kHz as for a

beam in pure bending. At 3 kHz the rotation wave cuts on, but the main response above this
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Fig. 12. Real part of input radial mobility as a function of speed: — 0m/s, 40m/s, � � � � � � 80m/s.
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frequency is from the transverse shear wave, identified as root 3 in Fig. 5. For a different
excitation, for example by a moment, the rotation wave may be larger. Above 1 kHz the transfer
mobility reduces sharply as these waves have a short wavelength giving a high attenuation.

5.2.2. Longitudinal mobility on the neutral axis

Fig. 9 displays the real part and modulus of the input longitudinal mobility, and also the
modulus of the transfer mobility at 180�. At 60Hz the belt has a rigid body n ¼ 0 rotational
resonance. Below this frequency the tyre rotates and translates as a rigid body, as described by
root 3 in Fig. 5; the side-wall shear stiffness controls the response level. At 120Hz the belt rigid
body translation resonance occurs, denoted as n ¼ 1. Above this frequency the response level
drops until a minimum at the ring frequency at 450Hz. The coupling with transverse motion
causes a slight excitation to the bending modes in this region. At 600Hz the lowest excited
longitudinal mode is seen, the remainder of the sequence is clearly visible until 3 kHz. In this
region the transfer mobility is similar to the input mobility, which could mean that these waves are
sufficiently large to make a detectable contribution to radiated sound levels. The mean input
mobility takes the value of a longitudinally excited infinite rod.

5.2.3. Moment mobility and tangential mobility
In Section 4.3.3, it was shown that the tangential input mobility is the sum of the in-plane

response seen in Fig. 9, and the response to the moment about the neutral axis. The real
component and modulus of this moment component is displayed in Fig. 10. Also shown is the real
part and modulus of the total input tangential mobility. Below about 1 kHz the tangential
mobility is similar to the longitudinal mobility. However, near 3 kHz the cut on of the rotational
wave causes a major peak in the response. This peak dominates the response due to the moment
alone. It seems likely that this local resonance could contribute significantly in the tyre squeal
phenomena as it is excited by tangential forces and moves primarily tangentially to the surface.
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5.2.4. The effect of tyre pressure on transverse input mobility

Fig. 11 displays the transverse input mobility modulus as a function of tyre pressure. It is seen
that the increase in pressure has two effects. The most significant is that it increases the radial side-
wall stiffness thereby raising the frequency of the lowest radial natural frequency and decreasing
the total response level. The second less noticeable effect is the resulting increase of tyre tension.
This causes a stiffening of the belt below the ring frequency and so tends to raise natural
frequencies and decrease the response in this region. These two effects are at low frequencies and
would influence the vibration and noise within the vehicle.

5.2.5. The effect of tyre speed on the input transverse mobility
The tyre speed has two effects on the tyre vibration. The first is the change to the clockwise

and anti-clockwise wavenumbers, which was discussed in Section 3.5. The second is the
increasing centrifugal force on the belt which contributes to the tension, as described in Appendix
A. These two influences are seen in Fig. 12 for the mobility modulus and real part. The overall
response becomes lower from the belt stiffening and the decrease of the anti-clockwise
wavenumbers. These two mechanisms also cause a decrease in wavenumber which leads to
increase in sound radiation. Mode splitting is only noticeable on the first mode because of the high
attenuation of the clockwise wave due to the increase in wavenumber. The range in the figure,
0–40m/s, covers normal driving operation where the change in mobility due to speed is less than a
factor of two.
When the rotational speed is equal to the phase speed due to tension, a shock wave will develop

at the leading edge of the contact zone. A lot of power is absorbed by the tyre as the impedance
becomes very large, making failure likely. The 80m/s seen in the figure is near the limit for this
particular tyre. If a puncture occurs in a tyre, the loss in pressure will cause a decrease in
wavespeed giving the possibility of this failure mechanism at lower driving speeds. Tyres with a
high pressure would be more vulnerable.
Fig. 13. Radial point mobility: input modulus, � � � � � � input real part, — transfer modulus at 180�.
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5.2.6. The effect of an offset neutral axis

The effect of the non-alignment of the neutral axis and centroidal axis was investigated, but the
changes were so small that it was considered that a plot was unnecessary.

5.3. Tyre mobilities for point excitation

If there is point excitation rather than line excitation, the higher order mode groups, m40, are
summed with the m ¼ 0 response in accordance with Eq. (62a). Figs. 13 and 14 show the modulus
and real part of the input point mobility along with the transfer mobility at 180�. The excitation
and response were displaced from the centre line by a distance z0 ¼ b=10.
Fig. 13 gives the input and transfer mobilities in the radial direction. Below 300Hz the

frequency structure is similar to the m ¼ 0 version in Fig. 8, except that the input response is
greater on account of the presence of the stiffness component of the higher order modes. At about
0.6, 1.1, 1.7, 2.2 kHz humps in the input response indicate the cut-on of the m ¼ 1; 2; 3; 4; . . .
transverse mode groups. Only modes m ¼ 0–8 were included in the summation with the top cut-
on frequency at about 4 kHz. This explains why the slope is less than proportional to frequency, as
would be expected for a plate controlled by shear stiffness. Limiting the mode count in this way
simulates the effect of an excitation diameter of b=8.
Fig. 14 shows the input and transfer mobilities in the circumferential direction for tangential

excitation. The result is similar to that for m ¼ 0, in Fig. 10, except that the levels above 500Hz
are greater due to the summation of transverse modes. The four cut-on frequencies of the
transverse modes m ¼ 1; 2; 3; 4 are the same as for normal excitation, as the response is dominated
by the radial wave motion excited by the input moment. The ‘resonance’ from the rotational wave
cut on at 3 kHz is a clear feature, and is therefore expected to have an important role in the
dynamics of tangential motion and high-frequency sound generation.
Similar high frequency, normal and tangential excitation results are seen in Ref. [4].
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6. Conclusions

A sixth-order differential wave equation was derived to describe the motion of a curved tyre in the
frequency range between 0Hz and 4kHz, for point or line excitation, in the radial and tangential
directions. The model included the effects of: longitudinal stiffness, bending stiffness, shear stiffness,
tension, pressure, speed, side-wall stiffness in two directions, mass and rotary inertia.
The solution of this equation is three pairs of waves at each frequency. These waves are

described in terms of frequency dependency, ratio of circumferential to radial motion, ratio of
shear slope to bending slope, and amplitude and phase. The waves are used to assemble radial and
longitudinal transfer functions.
The behaviour of the tyre may be roughly divided into three frequency regions. First is the belt

rigid body region that occurs below the rigid body translational resonance frequency. At this
resonance the belt mass is mainly restrained by the side-wall radial stiffness. There is also local
stiffness deformation at the contact. The belt mass, pressure and tyre geometry are main
influences. If the pressure increases the rigid body frequency is raised and the tyre becomes stiffer,
lowering the mobility.
The second frequency region lies between the rigid body resonance and the belt ring frequency,

around 500Hz. Standing waves are observed on the belt in the radial direction. The behaviour is
controlled by belt tension and bending stiffness. The tension is a function of pressure and tyre
rotational speed; increasing these increases the stiffness and raises the resonant frequencies. The
belt moves as a rigid body in the longitudinal direction.
At about 500Hz the belt ring frequency occurs. Above this frequency longitudinal waves can

propagate within the belt and the coupling due to curvature between longitudinal to transverse
motion decreases. The ring frequency mode seems to be a local resonance around the excitation
line. The longitudinal waves propagate with relatively low attenuation and because of their long
wavelengths may contribute to the sound radiation.
In the lateral direction waves become strongly attenuated and only travelling waves are observed,

the belt behaves as if of infinite extent. Around 3kHz a new wave cuts on which involves rotation
without much transverse motion. At the same time the bending wave converts to a transverse shear
wave, controlled by the belt shear stiffness. This wave dominates the radial motion.
The effect of tyre speed was investigated. The general trend is to reduce the mobility at all

frequencies due to the combined influence of centrifugal force, and speed dependent wavenumber
changes. This would increase the power absorbed and radiated by the tyre.
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Appendix A. Tyre belt and side-wall tension

A segment of length 2ady and belt radius a, of a tyre cross-section is displayed in Fig. 15. The
belt mass/area is m. The transverse and circumferential belt tension/width Nz, Nc and the side-wall
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elements, are only a function of the pressure and geometry. The belt tension/length Nc is found
from the equations of equilibrium in the horizontal and radial directions. The tyre rotates at
O rad=s giving a belt velocity cm/s. The side-wall is the arc of a circle of radius as subtending an
angle 2fs. The arc is rotated making an angle f1 with the horizontal.
By considering the horizontal equilibrium of the right-hand side-wall element

Nz ¼ P:as, (A.1)

where the side-wall radius as is related to the side-wall arc length ls by

as ¼
ls

2fs

. (A.2)

The radial equilibrium of the belt segment can now be taken along the centre line

0 ¼ ððPþ O2maÞa:b�Ncb� 2Nza sinf1Þ2dy. (A.3)

This includes contributions from the pressure, centrifugal force, belt tension and side-wall tension,
respectively. By making substitutions from Eqs. (A.1) and (A.2), Eq. (A.3) can be re-arranged to
give the belt tension:

Nc ¼ Pa 1�
ls

b

sinf1

fs

� �
þ O2a2m. (A.4)
References

[1] H. Ishiara, Development of a three dimensional membrane element for the finite element analysis of tires, Tire

Science and Technology 13 (2) (1985).

[2] P.W.A. Zegelaar, S. Gong, H.B. Pacejka, Tyre models for the study of in-plane dynamics, in: The Dynamics of

Vehicles on Roads and Tracks, Vehicle System Dynamics, Swets & Zeitlinger, 1994.

[3] W. Kropp, Structure-sound on a smooth tyre, Applied Acoustics 20 (3) (1989) 181–193.

[4] K. Larsson, W. Kropp, A high frequency tyre model based on two coupled elastic layers, Journal of Sound and

Vibration 253 (4) (2001) 889–908.

[5] S. Gong, A Study of In-plane Dynamics of Tires, PhD Thesis, Delft University of Technology, Faculty of

Mechanical Engineering and Marine Technology, 1993.



ARTICLE IN PRESS

R.J. Pinnington / Journal of Sound and Vibration 290 (2006) 101–132132
[6] R.J. Pinnigton, A.R. Briscoe, A wave model for a pneumatic tyre belt, Journal of Sound and Vibration 253 (2002)

941–959.

[7] R.J. Pinnington, Radial force transmission to the hub from an unloaded stationary tyre, Journal of Sound and

Vibration 253 (2002) 961–983.

[8] S.J. Walsh, R.G. White, Mobility of a semi-infinite curved beam with constant curvature, Journal of Sound and

Vibration 221 (1999) 887–902.

[9] S.J. Walsh, R.G. White, Vibrational power transmission in curved beams, Journal of Sound and Vibration 223 (3)

(2000) 455–488.

[10] R.J. Pinnington, A wave model for a circular tyre. Part 2: side-wall and force transmission modelling, Journal of

Sound and Vibration; doi:10.1016/j.jsv.2005.03.024.

[11] P.P. Benham, F.W. Warnock, Mechanics of Solids, Pitman, New Zealand, Wellington, 1979.

[12] S. Timoshenko, Theory of Elastic Stability, McGraw-Hill, New York, 1936.

[13] L. Cremer, M.L. Heckl, E.E. Ungar, Structure-borne Sound, Springer, Berlin, 1973.

http://10.1016/j.jsv.2005.03.024

	A wave model of a circular tyre. Part 1: belt modelling
	Introduction
	Basic equations of motion
	Kinematic relationships
	Force equilibrium equations
	Hookeaposs Law relationships
	Circumferential stressndashstrain
	Shear stressndashstrain relationships
	Bending momentndashcurvature

	The ratio of shear rotation to bending rotation
	Equivalent modal stiffness
	Modal stiffness from the shear force and tension
	The modal stiffness from the side-wall


	Equations of equilibrium in kinematic parameters
	Equation of radial equilibrium
	The equation of circumferential equilibrium
	The wave equation for a circular tyre belt
	Wavenumbers modified by tyre rotation

	Belt transfer functions
	The wave field
	Radial displacement
	Circumferential displacement
	The slope due to bending

	The boundary conditions
	Continuity of radial displacement
	Continuity of circumferential displacement
	Continuity of slope due to bending
	Bending moment
	Normal force resolution
	Tangential force resolution

	The belt transfer functions
	Radial and circumferential mobility for a normal force
	Radial and circumferential mobilities for a circumferential force
	Radial and circumferential mobilities for a tangential force on the surface


	Parameter study
	Wavenumber as a function of frequency
	Wavenumber root1
	Wavenumber root 2
	Wavenumber root 3

	Transfer functions for line excitation in the radial and circumferential directions
	Radial mobilities
	Longitudinal mobility on the neutral axis
	Moment mobility and tangential mobility
	The effect of tyre pressure on transverse input mobility
	The effect of tyre speed on the input transverse mobility
	The effect of an offset neutral axis

	Tyre mobilities for point excitation

	Conclusions
	Acknowledgement
	Tyre belt and side-wall tension
	References


